228 research outputs found

    Eigenvalue distribution of time and frequency limiting

    Get PDF

    Conformal Turbulence with Boundary

    Full text link
    Based upon the formalism of conformal field theory with a boundary, we give a description of the boundary effect on fully developed two dimensional turbulence. Exact one and two point velocity correlation functions and energy power spectrum confined in the upper half plane are obtained using the image method. This result enables us to address the infrared problem of the theory of conformal turbulence.Comment: 10pages, KHTP-93-01, SNUCTP-93-0

    Realistic Electron-Electron Interaction in a Quantum Wire

    Full text link
    The form of an effective electron-electron interaction in a quantum wire with a large static dielectric constant is determined and the resulting properties of the electron liquid in such a one-dimensional system are described. The exchange and correlation energies are evaluated and a possibility of a paramagnetic-ferromagnetic phase transition in the ground state of such a system is discussed. Low-energy excitations are briefly described.Comment: 10 pages, 6 figure

    On Fields with Finite Information Density

    Full text link
    The existence of a natural ultraviolet cutoff at the Planck scale is widely expected. In a previous Letter, it has been proposed to model this cutoff as an information density bound by utilizing suitably generalized methods from the mathematical theory of communication. Here, we prove the mathematical conjectures that were made in this Letter.Comment: 31 pages, to appear in Phys.Rev.

    Statistical Mechanics of the Self-Gravitating Gas: I. Thermodynamic Limit and Phase Diagram

    Full text link
    We provide a complete picture to the selfgravitating non-relativistic gas at thermal equilibrium using Monte Carlo simulations, analytic mean field methods (MF) and low density expansions. The system is shown to possess an infinite volume limit in the grand canonical (GCE), canonical (CE) and microcanonical (MCE) ensembles when(N, V) --> infinity, keeping N/ V^{1/3} fixed. We compute the equation of state (we do not assume it as is customary), as well as the energy, free energy, entropy, chemical potential, specific heats, compressibi- lities and speed of sound;we analyze their properties, signs and singularities. All physical quantities turn out to depend on a single variable eta = G m^2 N/ [V^{1/3} T] that is kept fixed in the N--> infinity and V --> infinity limit. The system is in a gaseous phase for eta < eta_T and collapses into a dense objet for eta > \eta_T in the CE with the pressure becoming large and negative. At eta simeq eta_T the isothermal compressibility diverges. Our Monte Carlo simulations yield eta_T simeq 1.515. PV/[NT] = f(eta) and all physical magni- tudes exhibit a square root branch point at eta = eta_C > eta_T. The MF for spherical symmetry yields eta_C = 1.561764.. while Monte Carlo on a cube yields eta_C simeq 1.540.The function f(eta) has a second Riemann sheet which is only physically realized in the MCE.In the MCE, the collapse phase transition takes place in this second sheet near eta_MC = 1.26 and the pressure and temperature are larger in the collapsed phase than in the gas phase.Both collapse phase transitions (CE and MCE) are of zeroth order since the Gibbs free energy jumps at the transitions. f(eta), obeys in MF a first order non-linear differential equation of first kind Abel's type.The MF gives an extremely accurate picture in agreement with Monte Carlo both in the CE and MCE.Comment: Latex, 51 pages, 15 .ps figures, to appear in Nucl. Phys.

    Superfluid Flow Past an Array of Scatterers

    Full text link
    We consider a model of nonlinear superfluid flow past a periodic array of point-like scatterers in one dimension. An application of this model is the determination of the critical current of a Josephson array in a regime appropriate to a Ginzburg-Landau formulation. Here, the array consists of short normal-metal regions, in the presence of a Hartree electron-electron interaction, and embedded within a one-dimensional superconducting wire near its critical temperature, TcTc. We predict the critical current to depend linearly as A(Tc−T)A (Tc-T), while the coefficient AA depends sensitively on the sizes of the superconducting and normal-metal regions and the strength and sign of the Hartree interaction. In the case of an attractive interaction, we find a further feature: the critical current vanishes linearly at some temperature T∗T* less than TcTc, as well as at TcTc itself. We rule out a simple explanation for the zero value of the critical current, at this temperature T∗T*, in terms of order parameter fluctuations at low frequencies.Comment: 23 pages, REVTEX, six eps-figures included; submitted to PR

    Higher order terms in the inflaton potential and the lower bound on the tensor to scalar ratio r

    Full text link
    The MCMC analysis of the CMB+LSS data in the context of the Ginsburg-Landau approach to inflation indicated that the fourth degree double--well inflaton potential best fits the present CMB and LSS data. This provided a lower bound for the ratio r of the tensor to scalar fluctuations and as most probable value r = 0.05, within reach of the forthcoming CMB observations. We systematically analyze here the effects of arbitrary higher order terms in the inflaton potential on the CMB observables: spectral index ns and ratio r. Furthermore, we compute in close form the inflaton potential dynamically generated when the inflaton field is a fermion condensate in the inflationary universe. This inflaton potential turns to belong to the Ginsburg-Landau class too. The theoretical values in the (ns,r) plane for all double well inflaton potentials in the Ginsburg-Landau approach (including the potential generated by fermions) turn to be inside a universal banana-shaped region B. The upper border of the banana-shaped region B is given by the fourth order double--well potential and provides an upper bound for the ratio r.The lower border of B is defined by the quadratic plus an infinite barrier inflaton potential and provides a lower bound for the ratio r. For example, the current best value of the spectral index ns = 0.964, implies r is in the interval: 0.021 < r < 0.053. Interestingly enough, this range is within reach of forthcoming CMB observations.Comment: 24 pages, 10 figures. Presentation improved. To appear in Annals of Physic

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE

    Minimal energy for the traveling waves of the Landau-Lifshitz equation

    Full text link
    We consider nontrivial finite energy traveling waves for the Landau-Lifshitz equation with easy-plane anisotropy. Our main result is the existence of a minimal energy for these traveling waves, in dimensions two, three and four. The proof relies on a priori estimates related with the theory of harmonic maps and the connection of the Landau-Lifshitz equation with the kernels appearing in the Gross-Pitaevskii equation.Comment: submitte

    Asymptotics for the Fredholm Determinant of the Sine Kernel on a Union of Intervals

    Full text link
    In the bulk scaling limit of the Gaussian Unitary Ensemble of Hermitian matrices the probability that an interval of length ss contains no eigenvalues is the Fredholm determinant of the sine kernel sin⁥(x−y)π(x−y)\sin(x-y)\over\pi(x-y) over this interval. A formal asymptotic expansion for the determinant as ss tends to infinity was obtained by Dyson. In this paper we replace a single interval of length ss by sJsJ where JJ is a union of mm intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to ss of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times ss, plus a bounded oscillatory function of ss (zero of m=1m=1, periodic if m=2m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1)o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.Comment: 24 page
    • 

    corecore